functional difference equation - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

functional difference equation - translation to ρωσικά

EQUATION SPECIFYING A FUNCTION IMPLICITLY
Functional equations; Functional algebra; Abel's functional equation; Abel's Functional Equation; Poincaré equation; Poincaré's equation; Schröder functional equation; Schroeder functional equation; Poincare's equation; Schroder functional equation; Poincare equation; Functional Equations; Solving functional equations

functional difference equation      
функциональное разностное уравнение
functional difference equation      

математика

функционально-разностное уравнение

functional differential equation         
Functional Differential Equation; Functional differential equations
функционально-дифференциальное уравнение

Ορισμός

Schrodinger equation
¦ noun Physics a differential equation which forms the basis of the quantum-mechanical description of a particle.
Origin
1920s: named after the Austrian physicist Erwin Schrodinger.

Βικιπαίδεια

Functional equation

In mathematics, a functional equation is, in the broadest meaning, an equation in which one or several functions appear as unknowns. So, differential equations and integral equations are functional equations. However, a more restricted meaning is often used, where a functional equation is an equation that relates several values of the same function. For example, the logarithm functions are essentially characterized by the logarithmic functional equation log ( x y ) = log ( x ) + log ( y ) . {\displaystyle \log(xy)=\log(x)+\log(y).}

If the domain of the unknown function is supposed to be the natural numbers, the function is generally viewed as a sequence, and, in this case, a functional equation (in the narrower meaning) is called a recurrence relation. Thus the term functional equation is used mainly for real functions and complex functions. Moreover a smoothness condition is often assumed for the solutions, since without such a condition, most functional equations have very irregular solutions. For example, the gamma function is a function that satisfies the functional equation f ( x + 1 ) = x f ( x ) {\displaystyle f(x+1)=xf(x)} and the initial value f ( 1 ) = 1. {\displaystyle f(1)=1.} There are many functions that satisfy these conditions, but the gamma function is the unique one that is meromorphic in the whole complex plane, and logarithmically convex for x real and positive (Bohr–Mollerup theorem).

Μετάφραση του &#39functional difference equation&#39 σε Ρωσικά